Projekt für Handschriftenerkennung mit Python und NumPy
Implementierung eines einfachen neuronalen Netzwerks zur Erkennung handgeschriebener Ziffern mit Trainings- und Testdaten aus dem MNIST-Datensatz.
import numpy as np
import scipy.special
class neuralNetwork:
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.lr = learningrate
self.wih = np.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
self.activation_function = lambda x: scipy.special.expit(x)
def train(self, inputs_list, targets_list):
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
output_errors = targets - final_outputs
hidden_errors = np.dot(self.who.T, output_errors)
self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 - final_outputs)), hidden_outputs.T)
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), inputs.T)
def query(self, inputs_list):
inputs = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
return final_outputs
n = neuralNetwork(784, 200, 10, 0.1)
with open("mnist_train.csv", 'r') as file:
training_data_list = file.readlines()
for epoch in range(5):
for record in training_data_list:
all_values = record.split(',')
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
targets = np.zeros(10) + 0.01
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
with open("mnist_test.csv", 'r') as file:
test_data_list = file.readlines()
test_indexes = [0, 100, 500]
for index in test_indexes:
record = test_data_list[index]
all_values = record.split(',')
label = int(all_values[0])
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
outputs = n.query(inputs)
predicted_label = np.argmax(outputs)
print(f"Testbild {index}: Erwartet {label}, erkannt {predicted_label}")
for i, val in enumerate(outputs):
print(f"{i}: {val[0]:.4f}")
print("-" * 40)
scorecard = []
for record in test_data_list:
all_values = record.split(',')
correct_label = int(all_values[0])
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
outputs = n.query(inputs)
label = np.argmax(outputs)
scorecard.append(1 if label == correct_label else 0)
performance = np.asarray(scorecard).sum() / len(scorecard)
print("Genauigkeit:", round(performance * 100, 2), "%")